Picture Banner for SECC K12 Site

Albedo relation to health

How does this relate to public health?

Because of the effects of albedo, highly developed areas such as urban cities can experience higher average temperatures than surrounding suburban or rural areas, a phenomenon known as the “urban heat island effect.”1 The higher average temperatures can be attributed to less vegetation, higher population densities, and more infrastructure with darker surfaces (asphalt roads, brick buildings, etc.) that generate, reflect, and trap heat during hot summer months. Research has found that in some urban cities, the average air temperature can be as much as 22°F hotter in the evenings than surrounding areas.2,3 People who live in urban cities may be at greater risk for heat-related illnesses.

Figure B: Urban Heat Island Effect
Image from EPA

The state of North Carolina, however, has much more rural land mass and less densely populated urban areas than other states, making it less susceptible to the urban heat island effect.4,5

Figure C: Various land uses have different impacts on daily temperature.

Image from EPA

In fact, research suggests that in North Carolina, heat-related illnesses are more likely to occur in rural areas than in urban areas.6 Albedo is also related to sea level rise. The oceans’ dark surfaces facilitate the absorption of heat from the sun, melting large masses of ice in the ocean.7 As glaciers and ice caps in the ocean melt, sea level rise coupled with more frequent storm surges, may result in more frequent and intense flooding.8 These extreme weather events can reduce the availability of drinkable water, compromise the integrity of public health infrastructure, and cause direct death or injury in coastal communities.9,10


Figure D

Image from EPA

1Buechley RW, Van Bruggen J, Truppi LE. 1972. Heat island equals death island? Environmental Research. Mar;5(1):85–92.

2Portier CJ, et al. 2010. A human health perspective on climate change: a report outlining the research needs on the human health effects of climate change. Research Triangle Park, NC: Environmental Health Perspectives/National Institute of Environmental Health Sciences. doi:10.1289/ehp.1002272 <www.niehs.nih.gov/climatereport> Accessed November 17, 2012.

3Environmental Protection Agency, State and Local Climate and Energy Program. Heat island effect. October 19, 2012. <http://www.epa.gov/hiri/> Accessed November 17, 2012.

4Reid CE, O'Neill MS, Gronlund CJ, Brines SJ, Brown DG, Diez-Roux AV, Schwartz J. 2009. Mapping community determinants of heat vulnerability. Environmental Health Perspectives. Nov;117(11):1730-1736.

5UNC Institute for the Environment, The University of North Carolina at Chapel Hill. 2009. Climate change committee report 2009. <http://www.ie.unc.edu/PDF/Climate_Change_Report.pdf> Accessed November 17, 2012.

6Fuhrmann, C.M., Kovach, M.M., and C.E. Konrad II: Heat-related illness in North Carolina: Who’s at Risk? Annual Education Conference of the North Carolina Public Health Association, New Bern, NC, September 20, 2013. <http://www.sercc.com/sercc_projects> Accessed December 22, 2012.

7The Climate Institute. Oceans and sea level rise. (n.d.) <http://www.climate.org/topics/sea-level/index.html> Accessed November 17, 2012.

8Tebaldi, C., Strauss, B. H., & Zervas, C. E. (2012). Modelling sea level rise impacts on storm surges along US coasts. Environmental Research Letters, 7(1):014032.

9Environmental Protection Agency. Climate change: Human impacts and adaptation. June 14, 2012. <http://www.epa.gov/climatechange/impacts-adaptation/coasts.html#impactssea> Accessed November 17, 2012.

10English, PB; et al. 2009. Environmental health indicators of climate change for the United States: Findings from the State Environmental Health Indicator Collaborative. Environmental Health Perspectives. Nov;117(11):1673-1681.

Last modified date: Tuesday, August 13, 2013 - 8:45am